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Abstract. An acrodynamic design optimization procedure that is based on a evolu-
tionary algorithm known at Differential Evolution is described. Differential Evolution
is a simple, fast, wud robust evolutionary strategy that has been proven effective in
determining the global optimum for several difficult optimization problems, including
highly nonlinear s .stems with discontinuities and multiple local optima. The method is
combined with a Vavier-Stokes solver that evaluates the various intermediate designs
and provides inptts to the optimization procedure. An efficient constraint handling
mechanism is also incorporated. Results are presented for the inverse design of a tur-
bine airfoil from . modern jet engine. The capability of the method to search large
design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated.
Substantial reduc:ions in the overall computing time requirements are achieved by
using the algorith n in conjunction with neural networks.

1 Introduc:ion

Remarkable prog ress has been made in recent years in the ability to design tur-
bomachinery airfoil shapes that are optimal with regard to certain desired char-
acteristics. This »rogress has been achieved by combining improved methods for
predicting the complicated flow fields in turbomachinery with efficient numerical
optimization teclmiques and by harnessing the powerful capabilities of modern
computers. Both steady and unsteady Navier-Stokes and Euler solvers have been
combined with virious optimization techniques (gradient-based methods [1], [2],
response surface:, etc.) to optimize the design of turbomachinery airfoils.

More recently. there has been considerable interest in the development of tur-
bomachinery airloil design optimization techniques that are based on nontradi-
tional approache: such as evolutionary algorithms and neural networks. Various
approaches based on neural networks (see, for example, [3], [4], [5]), neural net-
works in conjunc tion with response surfaces [6], [7], genetic algorithms [8], [9],
and genetic algorithms in conjunction with neural networks [10],[11],[12] have
been reported in the literature. These techniques offer several advantages over
traditional optin ization methods.

This paper doals with the development of a turbomachinery airfoil design
optimization pro edure that is based on a relatively new evolutionary algorithm
known as Differc itial Evolution [13] developed for single-objective optimization
in continuous seirch spaces. It is conceptually simple and possesses good conver-
gence properties that have been demonstrated in a variety of applications. Dif-
ferential Evolution (DE) is best characterized as an evolutionary strategy (ES)
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rather than as a genetic algorithm (GA), although the distinction between GAs
and ESs has blurred in recent years. Perhaps the main ideological difference lies
in the relative in:portance given to the two main evolutionary operators, recom-
bination (crosso er) and mutation, with GA-based approaches relying heavily
on the former ar.d ES-based approaches on the latter. DE has proven to be an
effective approach in determining the global optimum for several difficult opti-
mization problems in a variety of applications. Its application in aeronautics,
however, has becn rather limited. It has been used in the predictive control of
aircraft dynamics [14). DE has been used in conjunction with a potential flow
solver in the inverse design of turbomachinery airfoils [15]; the same authors
have also presented a hybridized version [16] that combined DE with a local
search method t.» minimize the number of objective function evaluations using
the potential flow solver.

In this paper the DE algorithm is combined with a Navier-Stokes solver
that provides injuts to the optimization procedure. An efficient constraint han-
dling mechanisn: is also incorporated in the algorithm. An airfoil geometry
parametrization lat uses a minimal number of variables is also used to minimize
the number of objective function evaluations. The procedure is also combined
with neural networks that are incrementally trained on the Navier-Stokes sim-
ulation data anc can then be used in the objective function evaluation. This
results in substintial reductions in the overall computing time. Additionally,
the procedure h.is been implemented on a distributed parallel computer in a
straightforward mmanner that relies on the simultaneous computation of multi-
ple, independent aerodynamic simulations on separate processors. The procedure
is primarily script-based and allows for a variable number of processors to be
used depending «n the size of the population used in the DE algorithm. Details
of the method and its implementation and results for the inverse design of a
turbine airfoil to demonstrate its capabilities are described.

2 Design Optimization Method

The main ingredicnts of the design optimization method are discussed in this sec-
tion. The DE alg: rithm, the airfoil geometry parametrization procedure, and the
CFD flow solver ased for evaluating the objective function are discussed briefly.
Some details reg: rding the implementation of the method on parallel distributed
computers are al 0 provided. A hybrid version that helps reduce computational
cost by combining he DE algorithm with a neural network approach is also
described.

2.1 Differential Evolution

Differential Evol: tion is an ES-based approach developed for single-objective op-
timization in cortinuous search spaces. It is conceptually simple and possesses
good convergenci: properties that have been demonstrated in a variety of appli-
cations [18]. Detuils of the algorithm can be found elsewhere [13], [17]; only its
main features ar« summarized here.
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The approach uses a population P@ that contains N K-dimensional real-
valued paramete - vectors in generation ), where K is the number of parameters
or decision variables:

Pe=pPl=p3 ,i=1,,N;k=1.K (1)

The population is usually initialized in a random fashion and the population
size N is maintained constant throughout the optimization process. Differential
evolution is thus similar to a (u + A) ES [19] with x4 and A equal to N [20].
The method however differs from standard ES approaches in several respects as
described below.

As with all E¢-based approaches, mutation is the key ingredient of differential
evolution. The b: sic idea is to generate new parameter vectors for the subsequent
generation by us ng; weighted differences between two (or more) parameter vec-
tors selected randomly from the current population to provide appropriately
scaled perturbations that modify another parameter vector (or, comparison vec-
tor) selected fron the same population. This idea has been implemented in
various forms bu the form discussed and used here is the classical implementa-
tion where new 1rial parameter vectors Pi%cﬂ for the next generation @ + 1 are
generated according to the following mutation scheme:

P e PR A F (P2 i=1, N k=1, K (2)
where
a,b,ce{l,...N}; a;#b#ci#1

The integers :;, b;, and ¢; represent three random individuals of the popu-
lation that are n utually different from each other and from the running index
i. The mutation parameter F € [0,2] is a real, constant, user-supplied param-
eter that control: the amplification of the differential variation. Other variants
that either use t}-e difference between more than two parameter vectors or keep
track of the best »arameter vector at each generation and use it in the mutation
scheme have alsc: been developed [9] and used with varying success in specific
applications. Thu:s, differential evolution differs from other ESs most notably in
that the mutatio 1 operator is derived from the current population and not by
probability densiry functions that are defined separately.

DE is similar to other recombinative ES approaches in that it also uses dis-
crete recombination. While various recombination strategies exist [19] the strat-
egy adopted in cifferential evolution is to modify the trial parameter vectors

PR as follows:

P =P M rig <Cr or k=dy (4)
and
15?:' 1= pfk otherwise (5)
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In the above, r € [0,1] is a uniform random number, C; € [0,1] is the
crossover parany ter, and dy, is a randomly chosen index in {1, ..., K} that ensures

that ;5?: ! gets a' least one parameter from the mutated ﬁg:l and not all from

pfk. Note also that the mutation and recombination operations described above
can lead to new vectors that may fall outside the boundaries of the variables.
Various repair rules can be used to ensure that these inadmissible vectors do
not enter the population. A simple strategy, which is the one adopted here, is
to delete these inadmissible vectors and form new ones until the population is
filled.

The selection scheme used in DE is deterministic but differs from methods
usually employe! in standard ES approaches. Selection is based on local com-
petition only, with the child trial vector (or, child) PiQ“ competing against one
population member PiQ (the comparison vector) and the survivor entering the
new population »”f’“ . In other words, if PiQH yields a better objective func-
tion value than /% then PiQ+l is set to PiQ‘H. Otherwise, the old value PiQ is
retained. This gr-edy selection criterion results in fast convergence; the adaptive
nature of the mutation operator, in general, helps safeguard against premature
convergence and allows the process to extricate itself from local optima.

An efficient constraint handling mechanism has been incorporated into the
algorithm. Details are given elsewhere; briefly, it is a parameter-less penalty
function approach where infeasible solutions are penalized and help guide the
algorithm away from these regions. Physical constraints, e.g., maximum airfoil
thickness, etc., are imposed, as well as aerodynamic constraints (wavy surfaces,
etc.). Airfoil geotnetries that meet the constraints but for which the CFD solver
is unable to con-erge or "blows up” are also deemed infeasible and penalized

accordingly.

2.2 Airfoil Geometry Parametrization

Geometry parametrization and prudent selection of design variables are among
the most critical aspects of any shape optimization procedure. The ability to rep-
resent various airfoil geometries with a common set of geometrical parameters
is essential. Varintions of the airfoil geometry can be obtained then by smoothly
varying these parameters. Geometrical constraints imposed for various reasons,
such as structural, aerodynamic (e.g., to eliminate flow separation), etc., should
be included in this parametric representation as much as possible. Addition-
ally, the smallest number of parameters should be used to represent the family
of airfoils. Here, the airfoil geometry parametrization method described in [6]
that uses a total »f 13 parameters to define the turbine airfoil geometry is used.
Figure 1 illustrates the method for a generic airfoil. The geometric parameters
used are the leading edge and trailing edge airfoil metal angles (2 parameters),
eccentricity of uj per leading edge ellipse (1 parameter), angles defining the ex-
tent of the leadir.g edge ellipses (2 parameters), semi-minor axes values at the
leading edge (2 p.rameters), angles defining the extent of the trailing edge circle
(2 parameters), airfoil y-coordinate values at about 50% chord on the upper and
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lower surfaces (2 parameters), and airfoil y-coordinate values at about 25% and
75% chord on the 1:;pper surface (2 parameters).

2.3 Flow Soher for Objective Function Evaluation

A two-dimensional Navier-Stokes solver is used to perform the flow simulations
(direct function :waluations) that serve as inputs to the optimization process.
Multiple grids ar- used to discretize the flow domain; an inner ” O” grid that con-
tains the airfoil and an outer ”H” grid that conforms to the external boundaries
as shown in Fig. 3. The flow parameters that are specified are the turbine pres-
sure ratio, inlet temperature and flow angle, flow coefficient, and unit Reynolds
number based on inlet conditions.

2.4 Parallel 1-uplementation Details

In order to reduce overall design time, the procedure has been implemented on
distributed paralicl computers. The results in this article were obtained on the
SGI Origin 3000 and the Cray SV1 at NASA Ames Researach Center. The imple-
mentation of the method is quite straightforward and relies on the simultaneous
computation of multiple, independent aerodynamic simulations on separate pro-
cessors. The procdure is primarily script-based and allows for a variable number
of processors to he used depending on processor availability and the size of the
population used in the DE algorithm. The number of processors can also be
adjusted as the design proceeds. The current setup is based on a ” master-slave”
arrangement, with the master handling the tasks of setting up the simulations,
neural network training for the hybrid method, and farming out of the aero-
dynamic comput itions to the other "slave” processors. Since the aerodynamic
computations ar« independent of each other, no communication between the pro-
cessors is required until the computations are completed. The slave processors
then communicate their results to the master which then performs the necessary
calculations to di termine the members of the next population.

2.5 Hybrid Differential Evolution—-Neural Network (DE-NN)
Approach

While the DE al; orithm is quite efficient in terms of exploring the entire design
space in its searct for the optimum solution, there is a tendency for the algorithm
to slow down aft(r it approaches the vicinity of the optimal solution and several
function evaluations are required in order to obtain the exact optimal solution.
This can be remelied by a hybrid approach that combines the DE algorithm with
neural networks that are incrementally trained on the Navier-Stokes simulation
data. The traine | neural network can then be used to evaluate the objective
function evaluation with little or no computational expense instead of using the
Navier-Stokes solver. While hybridization is always useful, it must be done with
caution. Here we resort to it only in the latter stages after the entire population
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has evolved to the general vicinity of the optimal solution. Thus the neural
network is used 3 a ”local” response surface with validity only in a small region
of the design space This makes it easier to train the neural network and improves
its generalization abilities.

The results ¢ tained in this article were obtained using a feed-forward neu-
ral network witli two hidden layers as shown in Fig. 3. The first node in the
input layer is a bias node (input of 1.0) and the remaining input nodes are used
to specify the v: rious design parameters. For the inverse design optimization
problem, the neural network is trained on the sum-of-squares error between the
actual pressure ind the target pressure at various points on the airfoil. For the
sake of brevity, d-tails such as the number of neurons in each layer, etc. are not
included here.

3 Results

The design met} od was used in the inverse design of a turbine airfoil with a
specified pressur- distribution. The target pressure distribution was obtained
at the midspan ~f a turbine vane from a modern jet engine and was supplied
by Pratt and Whitney (Private Communication, F. Huber, 1997). Several flow
and geometry parameters were also supplied and used in the design process. The
design objective function was formulated as the equally-weighted sum-of-squares
error between th target and actual pressure obtained during the optimization
process at 45 loc itions on the airfoil.

The initial deign space was chosen to be quite large to allow for a wide range
of airfoil shapes 1) be explored. In order to hold the CFD function evaluations to
a reasonable nun ber, 6 (instead of 13) design variables were used in the initial
stages of the desi :n. The population of 50 members were then evolved using the
DE algorithm. Tic DE mutation and crossover parameters were both chosen to
be 0.8 based on rior experience with other problems; no attempts were made
to optimize thes: parameters. Figure 4 shows the pressure distribution for an
intermediate airfiil that represents the best airfoil obtained after 10 generations
using the DE optimization method. The algorithm is able to approach the tar-
get distribution vithin roughly 500 function evaluations (note that the actual
number of functin evaluations is much less, because many of the initial airfoil
geometries that 1-ere infeasible were not evaluated by the CFD solver. After 10
generations, the number of design variables is increased to 13 and the popu-
lation evolved fu ther. As is typical with other genetic algorithms, once in the
vicinity of the optimal solution, convergence of the DE algorithm slows down
considerably. The final design shown in Fig. 5 was obtained after another 10
generations.

In order to r« duce the computational cost of the CFD function evaluations
the population aller the first 10 generations was used to train a neural network.
Figure 6 shows the band around the target pressure distribution in which all
the data used to train the neural network lie. Note, however, that the network
was trained direc 1y on the sum-square-error and not on the individual pressure
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data. The data »and in Fig. 6 gives an idea of the local nature of the neural
network respons : surface in the vicinity of the optimal solution. The trained
neural network was used in lieu of the CFD solver to perform the function
evaluation with negligible computational cost. The final design obtained was
close to that shown in Fig. 5. Finally, Fig. 7 shows the optimal airfoil geometry
obtained by the DE algorithm.

Attempts to quantify the computational costs and obtain more detailed eval-
uation of the various parameters are currently underway.

4 Summary-

An aerodynamic design optimization procedure that is based on a evolutionary
" algorithm known ar Differential Evolution is described. The method is combined
with a Navier-St rkes solver that evaluates the various intermediate designs and
provides inputs (o the optimization procedure. Results are presented for the
inverse design of a turbine airfoil from a modern jet engine. The capability of
the method to s arch large design spaces and obtain the optimal airfoils with
a reasonable number of CFD function evaluations in an automatic fashion is
demonstrated. 1he airfoil geometry parametrization and constraint handling
procedure helps imit the number of CFD function evaluations required by dis-
allowing airfoil ; ecmetries that are infeasible from a physical or aerodynamic
standpoint. Substantial reductions in the overall computing time requirements
are achieved by the hybrid DE-NN algorithm that uses a neural network trained
on the CFD dat.. to evaluate the objective function in the latter stages of the
design evolution
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Figure 1. Schen atic of a generic airfoil showing location of control points on the
airfoil surface a1d the defining angles used in the parameterization of the airfoil
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Figure 2. Representative turbine airfoil geometry and
con putational grid used in the CFD simulations.
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Figire 3. Schematic of the three-layer feed-forward
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